Из чего исходят при выборе конструкции теплообменника? В чем заключается конструктивный расчет теплообменника?
Материалы о воде / Выбор теплообменника / Из чего исходят при выборе конструкции теплообменника? В чем заключается конструктивный расчет теплообменника?

Теплообменниками называются аппараты, в которых происходить теплообмен, между рабочими средами не зависимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, концентраторы, пастеризаторы, испарители, деаэраторы, экономайзеры и д.р.)

Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых пе­редача тепла является основным процессом, и реакторы, в кото­рых тепловой процесс играет вспомогательную роль.

Классификация теплообменников возможна по различным признакам.

По способу передачи тепла различаются теплообменники смешения, в которых рабочие среды непосредственно соприка­саются или перемешиваются, и поверхностные теплообменни­ки - рекуператоры, в которых тепло передается через поверх­ность нагрева - твердую (металлическую) стенку, разделяю­щую эти среды.

По основному назначению различаются подогреватели, испа­рители, холодильники, конденсаторы.

В зависимости от вида рабочих сред различаются теплооб­менники:

а) жидкостно-жидкостные - при теплообмене между двумя жидкими средами;

б) парожидкостные - при теплообмене между паром и жид­костью (паровые подогреватели, конденсаторы);

в) газожидкостные - при теплообмене между газом и жид­костью (холодильники для воздуха) и др.

По тепловому режиму различаются теплообменники перио­дического действия, в которых наблюдается нестационарный тепловой процесс, и непрерывного действия с установившимся во времени процессом.

В теплообменниках периодического действия тепловой обра­ботке подвергается определенная порция (загрузка) продукта;

вследствие изменения свойств продукта и его количества пара­метры процесса непрерывно варьируют в рабочем объеме аппа­рата во времени.

При непрерывном процессе параметры его также изменяют­ся, но вдоль проточной части аппарата, оставаясь постоянными во времени в данном сечении потока. Непрерывный процесс ха­рактеризуется постоянством теплового режима и расхода рабо­чих сред, протекающих через теплообменник.

В качестве теплоносителя наиболее широко применяются насыщенный или слегка перегретый водяной пар. В смеситель­ных аппаратах пар обычно барботируют в жидкость (впускают под уровень жидкости); при этом конденсат пара смешивается с продуктом, что не всегда допустимо. В поверхностных аппара­тах пар конденсируется на поверхности нагрева и конденсат удаляется отдельно от продукта с помощью водоотводчиков. Водяной пар как теплоноситель обладает множеством преиму­ществ: легкостью транспортирования по трубам и регулирова­ния температуры, высокой интенсивностью теплоотдачи и др. Применение пара особенно выгодно при использовании принципа многократного испарения, когда выпариваемая из продукт вода направляется в виде греющего пара в другие выпарные аппараты и подогреватели.

Обогрев горячей водой и жидкостями также имеет широкое применение и выгоден при вторичном использовании тепла конденсатов и жидкостей (продуктов), которые но ходу технологи­ческого процесса нагреваются до высокой температуры. В срав­нении с паром жидкостный подогрев менее интенсивен и отли­чается переменной, снижающейся температурой теплоносителя. Однако регулирование процесса и транспорт жидкостей так же удобны, как и при паровом обогреве.

Общим недостатком парового и водяного обогрева является быстрый рост давления с повышением температуры. В услови­ях технологической аппаратуры пищевых производств при паро­вом и водяном обогреве наивысшие температуры ограничены 150-160 С, что соответствует давлению (5-7) 105 Па.

В отдельных случаях (в консервной промышленности) при­меняется масляный обогрев, который позволяет при атмосфер­ном давлении достигнуть температур до 200°С.

Широко применяется обогрев горячими газами и воздухом (до 300—1000°С) в печах, сушильных установках. Газовый обо­грев отличается рядом недостатков: трудностью регулирования и транспортирования теплоносителя, малой интенсивностью теп­лообмена, загрязнением поверхности аппаратуры (при исполь­зовании топочных газов) и др. Однако в ряде случаев он явля­ется единственно возможным (например, в воздушных сушил­ках).

В холодильной технике используется ряд хладагентов: воз­дух, вода, рассолы, аммиак, углекислота, фреон и др.

При любом использовании теплоносителей и хладагентов тепловые и массообменные процессы подчинены основному— технологическому процессу производства, ради которого созда­ются теплообменные аппараты и установки. Поэтому решение задач оптимизации теплообмена подчинено условиям рациональ­ного технологического процесса.

Для нагревания и охлаждения жидких сред разработаны теплообменники разнообразных конструкций. Ниже рассматри­ваются некоторые конструкции теплообменных аппаратов, при­меняющихся в пищевой промышленности.

Смотрите также

Устройство прудов
Природой создано множество удивительных водных сооружений. Уединенно протекающий в глубине леса ручей или тихий пруд у опушки леса, спрятанный среди зелени и причудливого ландшафта, вселяют в душу ...

Стили водных сооружений
Независимо от того, какой вид примет ваше водное сооружение, будь это тихий маленький ручеек, спрятавшийся в зарослях декоративных растений, или большой водопад, поражающий гостей своим великолепие ...

Лечебные свойства воды
Медики доказали, что всего лишь 10% потерянной жидкости организмом, оказывает отрицательное влияние на обменные процессы в организме человека, а значит, и здоровье его ухудшается. Вода — вещест ...