Из чего исходят при выборе конструкции теплообменника? В чем заключается конструктивный расчет теплообменника?
Материалы о воде / Выбор теплообменника / Из чего исходят при выборе конструкции теплообменника? В чем заключается конструктивный расчет теплообменника?

Теплообменниками называются аппараты, в которых происходить теплообмен, между рабочими средами не зависимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, концентраторы, пастеризаторы, испарители, деаэраторы, экономайзеры и д.р.)

Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых пе­редача тепла является основным процессом, и реакторы, в кото­рых тепловой процесс играет вспомогательную роль.

Классификация теплообменников возможна по различным признакам.

По способу передачи тепла различаются теплообменники смешения, в которых рабочие среды непосредственно соприка­саются или перемешиваются, и поверхностные теплообменни­ки - рекуператоры, в которых тепло передается через поверх­ность нагрева - твердую (металлическую) стенку, разделяю­щую эти среды.

По основному назначению различаются подогреватели, испа­рители, холодильники, конденсаторы.

В зависимости от вида рабочих сред различаются теплооб­менники:

а) жидкостно-жидкостные - при теплообмене между двумя жидкими средами;

б) парожидкостные - при теплообмене между паром и жид­костью (паровые подогреватели, конденсаторы);

в) газожидкостные - при теплообмене между газом и жид­костью (холодильники для воздуха) и др.

По тепловому режиму различаются теплообменники перио­дического действия, в которых наблюдается нестационарный тепловой процесс, и непрерывного действия с установившимся во времени процессом.

В теплообменниках периодического действия тепловой обра­ботке подвергается определенная порция (загрузка) продукта;

вследствие изменения свойств продукта и его количества пара­метры процесса непрерывно варьируют в рабочем объеме аппа­рата во времени.

При непрерывном процессе параметры его также изменяют­ся, но вдоль проточной части аппарата, оставаясь постоянными во времени в данном сечении потока. Непрерывный процесс ха­рактеризуется постоянством теплового режима и расхода рабо­чих сред, протекающих через теплообменник.

В качестве теплоносителя наиболее широко применяются насыщенный или слегка перегретый водяной пар. В смеситель­ных аппаратах пар обычно барботируют в жидкость (впускают под уровень жидкости); при этом конденсат пара смешивается с продуктом, что не всегда допустимо. В поверхностных аппара­тах пар конденсируется на поверхности нагрева и конденсат удаляется отдельно от продукта с помощью водоотводчиков. Водяной пар как теплоноситель обладает множеством преиму­ществ: легкостью транспортирования по трубам и регулирова­ния температуры, высокой интенсивностью теплоотдачи и др. Применение пара особенно выгодно при использовании принципа многократного испарения, когда выпариваемая из продукт вода направляется в виде греющего пара в другие выпарные аппараты и подогреватели.

Обогрев горячей водой и жидкостями также имеет широкое применение и выгоден при вторичном использовании тепла конденсатов и жидкостей (продуктов), которые но ходу технологи­ческого процесса нагреваются до высокой температуры. В срав­нении с паром жидкостный подогрев менее интенсивен и отли­чается переменной, снижающейся температурой теплоносителя. Однако регулирование процесса и транспорт жидкостей так же удобны, как и при паровом обогреве.

Общим недостатком парового и водяного обогрева является быстрый рост давления с повышением температуры. В услови­ях технологической аппаратуры пищевых производств при паро­вом и водяном обогреве наивысшие температуры ограничены 150-160 С, что соответствует давлению (5-7) 105 Па.

В отдельных случаях (в консервной промышленности) при­меняется масляный обогрев, который позволяет при атмосфер­ном давлении достигнуть температур до 200°С.

Широко применяется обогрев горячими газами и воздухом (до 300—1000°С) в печах, сушильных установках. Газовый обо­грев отличается рядом недостатков: трудностью регулирования и транспортирования теплоносителя, малой интенсивностью теп­лообмена, загрязнением поверхности аппаратуры (при исполь­зовании топочных газов) и др. Однако в ряде случаев он явля­ется единственно возможным (например, в воздушных сушил­ках).

В холодильной технике используется ряд хладагентов: воз­дух, вода, рассолы, аммиак, углекислота, фреон и др.

При любом использовании теплоносителей и хладагентов тепловые и массообменные процессы подчинены основному— технологическому процессу производства, ради которого созда­ются теплообменные аппараты и установки. Поэтому решение задач оптимизации теплообмена подчинено условиям рациональ­ного технологического процесса.

Для нагревания и охлаждения жидких сред разработаны теплообменники разнообразных конструкций. Ниже рассматри­ваются некоторые конструкции теплообменных аппаратов, при­меняющихся в пищевой промышленности.

Смотрите также

Введение
Стремление быть ближе к природе изначально заложено в человеке. Именно на лоне природы ее сыны способны ощутить всю прелесть гармонии, господствующей в мироздании. С уверенностью можно сказать, что ...

Бассейны
На первый взгляд строительств бассейна кажется слишком сложным. На самом деле все гораздо проще. Только подумайте, как будет приятно вам наслаждаться отдыхом под солнцем рядом с водой, купаться и ...

Газодинамика
...